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Abslraet. The finite-range scaling method has been used t o  s t u d y  the Yang-Lee edge 
singularity problem for the one-dimensional ferromagnetic k ing  model with long-range 
interactions decaying with distance r, as r--d-a. The phase diagramand the critical expanenl 
Y have been calculated for different values of v by using finite ranges L s 9 .  The critical 
value dividing the long-range from the short-range critical regime has been discussed. 

1. Introduction 

In this paper, we study a one-dimensional S =  1/2 ferromagnetic king system, with 
long-range interactions decaying with distance r as  rF(dto', U >  0, placed in a pure 
imaginary magnetic field ih", described by the Hamiltonian 

w N 

itj 

where 

J,=J, , l ! i - j !"" Jo> 0. 

The presence of a purely imaginary symmetry breaking field produces a phase 
transition of the second order, which belongs to a different universality class from the 
zero-field one. It arises i n  the study of density of zeros of the partition function in a 
complex field plain (Yang and Lee 1952) and corresponds to the Yang-Lee edge 
singularity (Fisher 1978). While the h = O  transition ( h  = h"/k,T) is due to the cumula- 
tion of those zeros near the real axis in  the complex field plane, the Yang-Lee edge 
singularity is produced by their cumulation around some particular point on the 
imaginary axis h,( T), when the temperature T is above the zero-field critical tem- 
perature. Although a non-Hermitian problem, it  appears to be in  the same universality 
class as a number of more 'realistic' problems, such as branching polymers in d + 2 
dimensions (Parisi and Sourlas 1981) or electronic localization in a random potential 

The Yang-Lee edge singularity, as well as the density of zeros itself, has been 
extensively studied for different short-range (SR) interaction models (see, for example, 
a review of Kurtze and Fisher (1979) which gives a long list of references). Various 
methods were applied, from high-temperature expansions (Kortman and Griffiths 
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1971), through different renormalization group (RG) techniques such as the &-expansion 
(Fisher 1978). block renormalization (Uzelac el al 1979), and finite-size scaling (Uzelac 
and Jullien 1981) to scarce exact results for the king model in d = 1 (Lee and Yang 
1952), d = 2  (Dhar 1983, Cardy 1982, 1985)) and d =CO (Baker and Moussa 1978). 

Within the long-range (LR) interaction models this problem has been less explored, 
although the Yang-Lee theorem and its consequences still hold there. 

A number of results can, however, be obtained without much effort by following 
the &-expansion approach for d-dimensional n-vector model in the k-space performed 
by Fisher (1978), by adding a LR term proportional to k" to the corresponding 
Hamiltonian, so that it becomes 

Z Glumac and K Uzelac 

. 
-H/k ,T= h@,-f d"k(ek2+fk"). 1DkI2- w J ddkd"k'@k@k.@-k-k.. J (2) 

The RG transformations in the zeroth order approximation then give the mean field 
(MF) borderline d * = 3 u  and a M F  critical exponent ~ = 2 - u .  By deriving other M F  
exponents e.g. p = f ,  U =  1/(2u), one can check that the borderline agrees also with 
hyperscaling. Furthermore, the exponents in the non-trivial region can also be derived 
without going through the extensive E-expansion calculations. It is sufficient to establish 
the fact that, as for the ordinary LR transitions, no new terms proportional to k" are 
generated by the &-expansion, so that the exponent 17 remains equal to its M F  value 
7 = 2 -U to all orders of E. Then, since the Yang-Lee transition has only one indepen- 
dent critical exponent (critical exponent A = l ) ,  all other exponents can be derived, 
e.g. v = 2 / ( d + u ) .  

A non-trivial question that arises involves the position of the second borderline, 
separating the LR from S R  regime. For the usual Qd model this borderline u J d )  is 
determined (Sak 1973) by the condition 2 - uc = T ~ ~ ,  i.e., the LR and SR values of the 
exponent 7 match, and since in this case qsn> 0, uc never exceeds two. I n  the present 
transition, however, a similar argument would result in values of U<> 2, which in the 
context of Hamiltonian (2) becomes meaningless, the small-k expansion ceasing to be 
valid. Similar difficulty arises in other problems involving a cubic term, e.g. those 
defined for disorder or the spin glass (Priest and Lubensky 1976; Chang and Sak 1984). 
Priest and Lubensky argue that the above mentioned criterion should be valid only 
for positive T ~ ~ .  while for qsn<O it only ensures the LR critical behaviour whenever 
U < 2. The calculations of Chang and Sak explicitly show that the exchange of stabilities 
between the LR and SR fixed points still formally occurs at uc = 2 - qsn.  even when 
vsn < 0. However, they consider this result as unphysical, since it leads to the already 
mentioned failure of the small-k expansion, and they assume the LR/SR crossover at 
U = 2 with discontinuous change of critical exponents. We prefer to consider this result 
as indecisive. One way to avoid this difficulty is to try to solve the problem directly in 
the real space. 

Recently, we developed a real-space RG procedure, the finite-range scaling (FRS), 
suitable for treating models with LR interactions in one dimension. We apply it to the 
I - D  Yang-Lee edge singularity problem defined by (1). Varying U will permit us to 
verify the conjectured values for the critical exponents as well as to discuss the LR/SR 

borderline problem within a new context. 
The plan of the paper is as follows: the next section contains a short formulation 

of FRS method and the definition of the transfer matrix used, paying particular attention 
to the convergence of the FRs-CahIlated quantities; in the third section the numerical 
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results for the phase diagram and the critical exponents are presented, the LR/SR 

crossover is discussed; the conclusion is summarized in section four. 

2. Method and calculations 

We apply the FRS method recently formulated for the I-D lsing model (Uzelac and 
G!umac !?SR) and explained in detail in OK recent paper (G!cmx ~ n d  LTze!zc. !?a?). 
Let us sketch its main idea and basic relations. 

It is assumed that a physical quantity which, for small t = ( T  - Tc)/ T, ,  diverges in 
the infinite-range system as C(t) = Cot-”, can be written in homogeneous form 

cL(t)= L ~ ’ ” Y ( L ’ / ~ .  1, L Y I .  U )  ( 3 )  

whcn the interactian range is tmncated to !he L:h neighbour. T, and p, 5’ denote the 
critical temperature and the exponents of the infinite-range system respectively, while 
the parameter U represents the leading correction to scaling, with the corresponding 
irrelevant exponent y , .  

In particular, applied to the correlation length 5, this assumption gives 

cL = LY(( L”” . t, L ~ I  . (4) 

The transition temperature is then numerically determined by the fixed point equation 

SL(fL)IL= SL--l(lL)l(L- 1 )  f~ = ( T L -  TJI Tc ( 5 )  

while the correlation length critical exponent U is given by 

uL’=ln(S:/Z;,)/ln(L/L‘)-l ( 6 )  

where 

t’= dt /dT and L‘=L-I  

The finite-range quantities required are calculated by the transfer-matrix formalism 
used in the h = 0 case (Glumac and Uzelac 1989). The transfer matrix Z is defined as 

zj,j+l = expl-[H,,,+, + ( H j  + H , + W I /  TI (7) 
where we choose the system of units where J o / k B  = 1, and 

L-I L - n  L 
H j = -  J. a j ( i ) a j ( i + n ) + i h  a,(i)  

“ - 1  i=, i=, 
(9) 

where we have introduced the L-component variable (I defined through a,(ij = S, j - , )L+,  
(see figure 1). 

Note that the addition of the external field h breaks the symmetry of the Hamiltonian 
under the change Sj -  -Sj, so that the quasidiagonalization into two 2‘-’-th order 
matrices is not possible (unlike the h = 0 case). 

The correlation length for the range L is given by 

tL= L / M A d A 2 , J  (10) 
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i j . l  

Figure 1. A part of the chain drawn in zig-rag form suggesting the use of transfer-matrix 
for L = 3 .  Interactions of ranges L = l ,  2, 3 are represented by full, long-broken and 
short-broken lines respectively. 

where A I , L  > are the two eigenvalues of B with the largest real parts. It is important 
to notice that, in the region of temperatures considered (near TL),  both of those 
eigenvalues are real. By lowering the temperature, another characteristic temperature 
( T c L )  is reached. It is the critical temperature of the second-order phase transition, 
which for the Yang-Lee singularity also exists in the finite-range system. At this point 
the eigenvalues merge and below it they become complex conjugate. Similar behaviour 
is encountered for the Yang-Lee transition in quantum I-D Ising model (Uzelac and 
Jullien 1981). 

The second quantity considered is the free energy density fi, given by 
~~ -. /L= -ic,r~-’ In(h,,,j=fO+fLSin8 ( i i j  

where fo denotes the non-singular part. Its singular part fsin8 is also expected to have 
a homogeneous form (3) 

= L-dr  YF( L1”. t, L”3 . U )  (12) 
where d, should be equal to the dimension OF space d. 

ine  quantiiies obtained as T,, U, or 5 , j i  are i-dependent due to diiierent 
corrections, which should be examined more closely. 

A peculiarity of the present problem in comparison with the h = 0 one is the 
previously mentioned existence of two different second-order transitions: one in the 
L = m  limit (at T,) and another for finite L (at TCL) .  In order to study the resulting 
modifications of scaling, we proceed along the same lines as for such a case within 
the FSS (Ferdinand and Fisher 1969). As the result we obtain the following scaling 
form near TcL 

C,(t)ooL‘Y-”’/”. t - u  (13) 
where i = (T-  TEL)/  T, and p is the finite-range exponent. Consequently, the L-depen- 
dence of the quantity CL( TL)/  L can adopt two types of behaviour: 

- 

5 L ,  c I L.- r - U - I I UL. h r  - l ) .xl  (!4) 
for TL approaching the Tc regime, and 

t L / L  = cL”l’ll 

for TL approaching the T,, regime, where a, b, c are constants 
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As regards the L-dependence of TL and wL,  the corrections are expected to be of 
the powerlaw type, if the corrections to scaling of the form (3) are assumed (Privman 
and Fisher 19831, i.e. 

where a, and v, are constants. 
Our numerical calculations have been performed up to the range L=9.  Since the 

above described L-dependence of critical temperature and exponents is rather pro- 
nounced, a careful convergence study with appropriate extrapolation procedures is 
needed to draw the conclusion on the L = m  limit. In this paper we have used the 
following two extrapolation procedures: 

(1) Vanden-Broeck and Schwartz (1979) extrapolation method with modifications 
due to Hamer and Barber (1981), described in our previous article (Glumac and Uzelac 
1989). Since the VBS method requires great precision of the input data, it could be 
applied to TL andfLSingr but not to vL.  

(2) Fitting the input data y, to the powerlaw form 

y,= a + c,L-“ (18) 

in the least-squares approximation (LSA). 

great care. As a test we have compared the fit with the more extended form 
Due to the small number of data in our case, both methods have to be used with 

y, = a + c, L-“ + c,L-@ L=5-9 (19) 

by numerical solution of the 5 x 5 system of equations, where a = limL-m yL, c, are 
constants and a and p are convergence exponents. 

3. Results 

( a )  Phase diagram 
The phase diagram resulting from the scaling equation (5) is presented in figure 2 for 
several values of U. The parameter space investigated is reduced to the region 0 < h i 
7112 due to the invariance properties of the partition function 

Z ( h )  = Z ( h  + m v )  (20) 

Z ( h ) = Z ( n -  h )  (21) 

m =0,  ?cl, 1-2,. . . 

which follow from the periodicity in h and from the S, + -S, symmetry respectively. 
K,. denotes the inverse critical temperature, obtained by L +  w extrapolation of 

L-dependent values K L  = l /  TL and defined by equation (5).  The short-range result, 
given by the exact expression K , =  -In(sin h ) / 2  is also drawn for comparison (the 
broken line). 

We include on the abscissa our previous results for h = O  (Glumac and Uzelac 
1989). It is interesting to notice the small humps near h = O  in  the small U region. We 
have checked that they are not caused by the difference in maximum range used in 
the two calculations (for h = O  the range was LSlO) .  Rather, they point out the 



506 Z Glumac and K Uzelac 

h 

0 

0 
\ I.. I I 

0 . 2  0.3 0 .4  0,s 0.6 0.1 

Kc. 

Figure 2. Phase diagram for LR interaction with following n YBIUCS: 0.1, 0.2, 0.3, 0.4, 0.8, 
1 . 1 ,  2.5, 4.0 going from left  to right. The exact SR result is traced by the broken cu~ye. 

difference between the convergence laws, belonging to two different phase transitions, 
n . l . l . L  CI". I .UO .L ." .U y ~ l . , ~ y " u "  1.1 L1.U L'6.V.L "1 "..>VI. ", "1.11.U LI..O 'Y'.*CL6'L.'C ,o 

the weakest in both cases. 
The L-dependence of KL is illustrated in figure 3 for different U'S in the range 

0.1-4, with a common fixed value of h. 

( b )  Crifical behaviour 
Before approaching the calculation of critical behaviour, let us examine the validity 
of the initial scaling hypothesis (4) for the present problem. It requires that the quantity 
&/L remains constant as a function of lIL, while the deviation from such behaviour 
indicates the importance of corrections to  scaling. In figure 4 we present our numerical 
results for tL/ L as a function of 11 L for different U'S varying in the wide range 0.3-4, 
while Lis taken from 4-8. There are two sets of results, taken at K,, and K ,  respectively, 
both for the same fixed h =0.7. One can observe a good scaling behaviour for U up 
to  approximately 3, with no particular difference between the mean-field (U<+) and 
the rest of this region. This should be expected, since, as we already pointed out in 
the h = 0 case, contrary to FSS (BrCzin 1982), the FRS should remain valid in the M F  

region. The reason is that the basic scaling parameter is the range of scaling, which 
in the M F  region remains relevant. The corrections to constant behaviour for u<2 .8  
have the regular form proportional to L-", decreasing with L. For U 3 2.8 the corrections 
start to increase with i, indicating the changing or the regime which will be dkcussed 
at the end of this section. 

As mentioned earlier, it is sufficient to know one critical exponenl. We calculate 
the exponent Y using ( 6 ) .  The important difference from our previous applications of 
FRS is the presence of an additional parameter h. Although the values of the critical 

x x r h i - h  b--nm-- mns- nnrr-niihln i n  thn mninn nf e m a l l  - ..,ham +hia Cn-.,PmPnrD io 
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X l (  

1 

KL 

SP 

I 1  I I I , 
119 118 117 ll6 115 114 

1 I L  

Figure 3. Dependence of FRS transition-temperature K, on I I L  far different YPIUCS of o 
and fixed h =0.9. Circles represent data for L= 4-9. Arrows pointing up and down indicate 
monotonically increasing and decreasing sequences o f  data, while * denotes the non- 
manatonical sequence. The full line denotes the SR transition-temperature at the same h. 

exponents do not depend on the position on the line T,(h), our results turn out to 
vary considerably with it, since the secondary effects which influence the convergence 
of results are rather susceptible to the choice of h. Looking for the criterion to select 
our results, we choose to take those values of h for which the scaling relations are 
obeyed best. For this purpose, we calculate another quantity, the free energy density 
and search for the h for which the corresponding critical exponent d, (c.f. (12)) is 
closest to unity, its exact value. The value of h obtained in this way is denoted by h*. 
Table 1 presents, lor different U'S,  the vaiues of h* foliowed by  the corresponding d, ,  
K,. and the related convergence exponent x K .  The error bars for K,, are taken as the 
difference between the two used extrapolation procedures. 

The critical exponent U has then been calculated from ( 6 ) ,  by taking h = h*. Since 
for uc2.8 the corrections to scaling are smaller for K,, (c.f. figure 4), we have taken 
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I I I 
118 117 116 115 1 I L  

1 / L  

Figure 4. Results for &JL as a function of l J L  for different m and fixed h=0.7. Data 
calculated at K ,  and K,. arc represented by open circles and crosses respectively. Arrows 
pointing up and down indicate monotonically increxsing and decreasing sequencer of data, 
while * denotes the non-monotonical sequence. 

K, = K,, for us 2.8, while K, = K L  for U 3. Results are presented in table 1. Values 
of U, are obtained as L + m, extrapolations from vL are calculated for sizes L = 1-9. 
With the exception of the M F  region, the comparison with conjectured values shows 
the agreement to within a few percent. Alarger error is to be expected in the M F  region 
since it involves small values of U. As observed already for h = 0 (Glumac and Uzelac 
1989), the effect of truncation is more pronounced there which slows down the 
convergence of results. 

In table 2 we compare the convergence exponents x, and xr corresponding to vL 
and &/L respectively. According to (17) and (14) they should both be equal and 
related to the leading irrelevant critical exponent y,. Indeed, we notice that the values 
for x, and xr are quite close to each other. Unfortunately, conjecture giving the exponent 
Y does not provide any estimate for y , ,  so we cannot make any comparison. Also, we 
point out that the results given at table 2 should be considered as a rough approximation, 
due to limitations of our convergence analysis mentioned earlier. 
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Table 1. The error bars are estimated 10 he lower than last cited digits. 

0.1 0.3 
0.2 0.08 
0.3 0.1 
0.4 0.1 
0.8 0.25 
1.3 0.4 
1.5 0.7 
1.7 0.9 
2.0 0.7 
2.2 0.8 
2.5 0.9 
2.8 1 .o 
3.0 0.9 
3.2 0.7 
3.5 0.7 
4.0 0.3 

0.93 
0.98 
0.97 
0.97 
0.94 
0.95 
0.97 
0.99 
0.92 
0.96 
1.00 
1.02 
0.94 
1.00 
0.94 
0.95 

0.035 
0.087 
0.116 
0.147 
0.192 
0.218 
0.120 
0.0744 
0.1483 
0.1196 
0.0947 
0.0709 
0.1032 
0.1901 
0.1962 
0.5637 

1.05 4 5.00 
0.99 I .8 2.50 
0.98 I .4 1.67 
0.95 I .3 1.43 
1.04 1.02 1.11 
1.05 0.88 0.87 
1.13 0.86 0.80 
1.34 0.70 0.74 
1.65 0.68 0.67 
1.61 0.63 0.63 
1.10 0.60 0.57 
1.15 0.56 0.53 
0.82 0.51 0.50 
1.01 0.51 0.50 
1.66 0.50 0.50 
1.58 0.50 0.50 

Table 2. Convergence exponents and xu defined by relations (9) and (12) respectively, 
as functions of v for the same choice of h*.  The error bars are estimated to be lower than 
last cited digits. 

0.1 0.3 0.98 1.71 
0.2 0.08 1.04 1.27 
0.3 0.1 0.94 1.11 
0.4 0.1 0.95 1.05 
0.8 0.25 0.81 0.31 
1.3 0.4 0.88 0.94 
1.5 0.7 0.87 0.95 
1.7 0.9 0.83 1.22 
2.0 0.7 0.94 I .04 
2.2 0.8 1.00 1.12 
2.5 0.9 0.45 7.43 
2.8 I .o 0.39 1.64 
3.0 0.9 - 0.47 
3.2 0.7 - 0.72 
3.5 0.7 - 0.81 
4.0 0.3 - 1.62 

Turning back to the question of uc, the boundary between the LR and SR regimes, 
let us consider figure 5 which represents U-' as a function of U. Our numerical results 
are compared to the M F  LR value U-' = 2u, the conjectured value U-' = ( d  + u)/2 in 
the non-trivial LR region and the SR value u ; i=2 .  The figure does not show the jump 
at U = 2, but rather a continuous crossover at U = 3 with the deviation from conjectured 
values not exceeding 6%. 

The two figures discussed earlier also indicate the change near U, = 3. In figure 4, 
representing & / L  as a function of 1 / L  and U, two different scaling regimes (equations 
(14) and (15) )  have been observed, separated at  U = 2.8. The same point is characteristic 
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Figure S. Extrapolated values for Y-' (open circles) compared with the exact or conjectured 
values (full line). 

for the change of behaviour of K L  as a function of 1/L (figure 3), which is manifested 
through the change from monotonously decreasing to monotonously increasing 
behaviour. The analogous change in the behaviour of critical temperature has already 
been observed in the case h = 0 (Glumac and Uzelac 1989), where it corresponds also 
to the L R / S R  boundary, which in that case occurs at U =  1. 

Although it cannot be ruled out that the continuous change of exponents (instead 
of a jump) is a consequence of our FRS procedure, we could not find arguments that 
would make such an explanation preferable. On the other hand, the results listed above 
strongly support the continuous change from the LR to the SR regime at U = 3. 

4. Conclusion 

We have shown that the recently developed F R s  method can be applied to the Yang-Lee 
edge singularity in the I-D LR king model. After careful handling of the additional 
parameter, and using appropriate extrapolation procedures, rather precise results for 
the phase diagram and the critical exponent U were obtained. The exponent v agrees 
with !he va!ue fo!!owing from sca!ing relations with A = 1 and 7 = 2 -U. 

Since the method applies in direct space, the question of localization of L R ~ S R  

crossover value of U could be considered out of context of the small-k expansion. 
Although an  artefact of the method cannot be excluded, the obtained results support 
uc=3 with the continuous change of critical exponents. 
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